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Introduction to Gradient Boosting

Aims and scope

Aims and scope

I Consider a sample containing the values of a response variable Y
and the values of some predictor variables X = (X1, . . . ,Xp)

>

I Aim: Find the “optimal” function f∗(X) to predict Y

I f∗(X) should have a “nice” structure, for example,

f∗(X) = β0 + β1X1 + · · ·+ βpXp (GLM) or

f∗(X) = β0 + f1(X1) + · · ·+ fp(Xp) (GAM)

⇒ f∗ should be interpretable
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Introduction to Gradient Boosting

Aims and scope

Example 1 - Birth weight data

I Prediction of birth weight by means of ultrasound measures
(Schild et al. 2008)

I Outcome: birth weight (BW) in g
I Predictor variables:

I abdominal volume (volABDO)

I biparietal diameter (BPD)

I head circumference (HC)

I other predictors (measured one week before delivery)

I Data from n = 150 children with birth weight ≤ 1600g

⇒ Find f∗ to predict BW
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Introduction to Gradient Boosting

Aims and scope

Birth weight data (2)

I Idea: Use 3D ultrasound measurements (left) in addition to
conventional 2D ultrasound measurements (right)

Sources: www.yourultrasound.com, www.fetalultrasoundutah.com

⇒ Improve established formulas for weight prediction
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Introduction to Gradient Boosting

Aims and scope

Example 2 - Breast cancer data

I Data collected by the Netherlands Cancer Institute
(van de Vijver et al. 2002)

I 295 female patients younger than 53 years

I Outcome: time to death after surgery (in years)

I Predictor variables: microarray data (4919 genes) + 9 clinical
variables (age, tumor diameter, ...)

⇒ Select a small set of marker genes (“sparse model”)

⇒ Use clinical variables and marker genes to predict survival
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Introduction to Gradient Boosting

Why boosting?

Classical modeling approaches

I Classical approach to obtain predictions from birth weight data and
breast cancer data: Fit additive regression models (Gaussian
regression, Cox regression) using maximum likelihood (ML)
estimation

I Example: Additive Gaussian model with smooth effects (represented
by P-splines) for birth weight data

⇒ f∗(X) = β0 + f1(X1) + · · ·+ fp(Xp)
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Introduction to Gradient Boosting

Why boosting?

Problems with ML estimation

I Predictor variables are highly correlated

⇒ Variable selection is of interest because of multicollinearity
(“Do we really need 9 highly correlated predictor variables?”)

I In case of the breast cancer data: Maximum (partial) likelihood
estimates for Cox regression do not exist (there are 4928 predictor
variables but only 295 observations, p� n)

⇒ Variable selection because of extreme multicollinearity

⇒ We want to have a sparse (interpretable) model including the
relevant predictor variables only

I Conventional methods for variable selection (univariate, forward,
backward, etc.) are known to be instable and/or require the model
to be fitted multiple times.
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Introduction to Gradient Boosting

Why boosting?

Boosting - General properties

I Gradient boosting (boosting for short) is a fitting method to
minimize general types of risk functions w.r.t. a prediction
function f

I Examples of risk functions: Squared error loss in Gaussian
regression, negative log likelihood loss

I Boosting generally results in an additive prediction function, i.e.,

f∗(X) = β0 + f1(X1) + · · ·+ fp(Xp)

⇒ Prediction function is interpretable

⇒ If run until convergence, boosting can be regarded as an alternative
to conventional fitting methods (Fisher scoring, backfitting) for
generalized additive models.
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Introduction to Gradient Boosting

Why boosting?

Why boosting?

In contrast to conventional fitting methods, ...

... boosting is applicable to many different risk functions (absolute
loss, quantile regression)

... boosting can be used to carry out variable selection during the
fitting process
⇒ No separation of model fitting and variable selection

... boosting is applicable even if p� n

... boosting addresses multicollinearity problems (by shrinking effect
estimates towards zero)

... boosting optimizes prediction accuracy (w.r.t. the risk function)
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Introduction to Gradient Boosting

Definition and Properties of Gradient boosting

Gradient boosting - estimation problem

I Consider a one-dimensional response variable Y and a
p-dimensional set of predictors X = (X1, . . . ,Xp)

>

I Aim: Estimation of

f∗ := argmin
f(·)

E[ρ(Y , f(X))] ,

where ρ is a loss function that is assumed to be differentiable with
respect to a prediction function f(X)

I Examples of loss functions:

I ρ = (Y − f(X))2 → squared error loss in Gaussian regression

I Negative log likelihood function of a statistical model
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Introduction to Gradient Boosting

Definition and Properties of Gradient boosting

Gradient boosting - estimation problem (2)

I In practice, we usually have a set of realizations

X = (X1, . . . , Xn), Y = (Y1, . . . , Yn) of X and Y , respectively

⇒ Minimization of the empirical risk

R =
1

n

n∑
i=1

ρ(Yi, f(Xi))

with respect to f

I Example: R =
1

n

n∑
i=1

(Yi − f(Xi))
2 corresponds to minimizing the

expected squared error loss
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Introduction to Gradient Boosting

Definition and Properties of Gradient boosting

Naive functional gradient descent (FGD)

I Idea: use gradient descent methods to minimize

R = R(f(1), . . . , f(n)) w.r.t. f(1) = f(X1), . . . , f(n) = f(Xn)

I Start with offset values f̂
[0]
(1), . . . , f̂

[0]
(n)

I In iteration m:
f̂
[m]
(1)
...

f̂
[m]
(n)

 =


f̂
[m−1]
(1)

...

f̂
[m−1]
(n)

+ ν ·


− ∂R

∂f(1)
(f̂

[m−1]
(1) )

...

− ∂R
∂f(n)

(f̂
[m−1]
(n) )

 ,

where ν is a step length factor

⇒ Principle of steepest descent
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Introduction to Gradient Boosting

Definition and Properties of Gradient boosting

Naive functional gradient descent (2)
(Very) simple example: n = 2, Y1 = Y2 = 0, ρ = squared error loss

⇒ R =
1

2

(
f2(1) + f2(2)

)
z == f12 ++ f22
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Introduction to Gradient Boosting

Definition and Properties of Gradient boosting

Naive functional gradient descent (3)

I Increase m until the algorithm converges to some values

f̂
[mstop]

(1) , . . . , f̂
[mstop]

(n)

I Problem with naive gradient descent:

I No predictor variables involved

I Structural relationship between f̂
[mstop]

(1) , . . . , f̂
[mstop]

(n) is ignored

(f̂
[m]
(1) → Y1, . . . , f̂

[m]
(n) → Yn)

I “Predictions” only for observed values Y1, . . . , Yn
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Introduction to Gradient Boosting

Definition and Properties of Gradient boosting

Gradient Boosting

I Solution: Estimate the negative gradient in each iteration

I Estimation is performed by some base-learning procedure regressing
the negative gradient on the predictor variables

⇒ base-learning procedure ensures that f̂
[mstop]

(1) , . . . , f̂
[mstop]

(n) are

predictions from a statistical model depending on the predictor

variables

I To do this, we specify a set of regression models (“base-learners”)
with the negative gradient as the dependent variable

I In many applications, the set of base-learners will consist of p simple
regression models (⇒ one base-learner for each of the p predictor
variables, “component-wise gradient boosting”)
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Introduction to Gradient Boosting

Definition and Properties of Gradient boosting

Gradient Boosting (2)

Functional gradient descent (FGD) boosting algorithm:

1. Initialize the n-dimensional vector f̂ [0] with some offset values
(e.g., use a vector of zeroes). Set m = 0 and specify the set of
base-learners. Denote the number of base-learners by P .

2. Increase m by 1. Compute the negative gradient − ∂

∂f
ρ(Y, f) and

evaluate at f̂ [m−1](Xi), i = 1, . . . , n. This yields the negative
gradient vector

U [m−1] = (U
[m−1]
i )i=1,...,n :=(

− ∂

∂f
ρ(Y, f)

∣∣∣
Y=Yi,f=f̂ [m−1](Xi)

)
i=1,...,n

...
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Introduction to Gradient Boosting

Definition and Properties of Gradient boosting

Gradient Boosting (3)

...

3. Estimate the negative gradient U [m−1] by using the base-learners
(i.e., the P regression estimators) specified in Step 1.

This yields P vectors, where each vector is an estimate of the
negative gradient vector U [m−1].

Select the base-learner that fits U [m−1] best (→ min. SSE). Set
Û [m−1] equal to the fitted values from the corresponding best
model.

...
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Introduction to Gradient Boosting

Definition and Properties of Gradient boosting

Gradient Boosting (4)

...

4. Update f̂ [m] = f̂ [m−1] + ν Û [m−1], where 0 < ν ≤ 1 is a real-valued
step length factor.

5. Iterate Steps 2 - 4 until m = mstop.

I The step length factor ν could be chosen adaptively. Usually, an
adaptive strategy does not improve the estimates of f∗ but will only
lead to an increase in running time
⇒ choose ν small (ν = 0.1) but fixed
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Introduction to Gradient Boosting

Definition and Properties of Gradient boosting

Schematic overview of Step 3 in iteration m
I Component-wise gradient boosting with one base-learner for each

predictor variable:

U [m−1] ∼ X1

U [m−1] ∼ X2

...

U [m−1] ∼ Xj

...

U [m−1] ∼ Xp

best-fitting base-learnerbest-fitting base-learner
Û [m−1]
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Introduction to Gradient Boosting

Definition and Properties of Gradient boosting

Simple example

I In case of Gaussian regression, gradient boosting is equivalent to
iteratively re-fitting the residuals of the model.
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Introduction to Gradient Boosting

Definition and Properties of Gradient boosting

Simple example

I In case of Gaussian regression, gradient boosting is equivalent to
iteratively re-fitting the residuals of the model.
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Introduction to Gradient Boosting

Definition and Properties of Gradient boosting

Simple example

I In case of Gaussian regression, gradient boosting is equivalent to
iteratively re-fitting the residuals of the model.
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Introduction to Gradient Boosting

Definition and Properties of Gradient boosting

Simple example

I In case of Gaussian regression, gradient boosting is equivalent to
iteratively re-fitting the residuals of the model.
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Introduction to Gradient Boosting

Definition and Properties of Gradient boosting

Simple example

I In case of Gaussian regression, gradient boosting is equivalent to
iteratively re-fitting the residuals of the model.
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Simple example

I In case of Gaussian regression, gradient boosting is equivalent to
iteratively re-fitting the residuals of the model.
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Simple example

I In case of Gaussian regression, gradient boosting is equivalent to
iteratively re-fitting the residuals of the model.
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Simple example

I In case of Gaussian regression, gradient boosting is equivalent to
iteratively re-fitting the residuals of the model.
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Properties of gradient boosting

I It is clear from Step 4 that the predictions of Y1, . . . , Yn in
iteration mstop take the form of an additive function:

f̂ [mstop] = f̂ [0] + ν Û [0] + · · ·+ ν Û [mstop−1]

I The structure of the prediction function depends on the choice of
the base-learners

I For example, linear base-learners result in linear prediction
functions

I Smooth base-learners result in additive prediction functions
with smooth components

⇒ f̂ [mstop] has a meaningful interpretation
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Gradient boosting with early stopping

I Gradient boosting has a
”
built-in“ mechanism for base-learner

selection in each iteration.

⇒ This mechanism will carry out variable selection.

I Gradient boosting is applicable even if p > n.

I In case p > n, it is usually desirable to select a small number of
informative predictor variables (“sparse solution”).

I If m→∞, the algorithm will select non-informative predictor
variables.

⇒ Overfitting can be avoided if the algorithm is stopped early, i.e.,
if mstop is considered as a tuning parameter of the algorithm
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Illustration of variable selection and early stopping

I Very simple example: 3 predictor variables X1, X2, X3,

3 linear base-learners with coefficient estimates β̂
[m]
j , j = 1, 2, 3

I Assume that mstop = 5

I Assume that X1 was selected in the first, second and fifth iteration

I Assume that X3 was selected in the third and forth iteration

f̂ [mstop] = f̂ [0] + ν Û [0] + ν Û [1] + ν Û [2] + ν Û [3] + ν Û [4]

= β̂[0] + ν β̂
[0]
1 X1 + ν β̂

[1]
1 X1 + ν β̂

[2]
3 X3 + ν β̂

[3]
3 X3 + ν β̂

[4]
1 X1

= β̂[0] + ν
(
β̂
[0]
1 + β̂

[1]
1 + β̂

[4]
1

)
X1 + ν

(
β̂
[2]
3 + β̂

[3]
3

)
X3

= β̂[0] + β̂∗
1X1 + β̂∗

3X3

⇒ Linear prediction function

⇒ X2 is not included in the model (variable selection)
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How should the stopping iteration be chosen?

I Use cross-validation techniques to determine mstop
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⇒ The stopping iteration is chosen such that it maximizes prediction
accuracy.
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Shrinkage

I Early stopping will not only result in sparse solutions but will also
lead to shrunken effect estimates (→ only a small fraction of Û is
added to the estimates in each iteration).

I Shrinkage leads to a downward bias (in absolute value) but to a
smaller variance of the effect estimates (similar to Lasso or Ridge
regression).

⇒ Multicollinearity problems are addressed.
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Further aspects

I There are many types of boosting methods, e.g.,

I tree-based boosting (AdaBoost, Freund & Schapire 1997)

I likelihood-based boosting (Tutz & Binder 2006)

I Here we consider gradient boosting

I Flexible method to fit many types of statistical models in high-
and low-dimensional settings

I Regularization of estimates via variable selection and shrinkage

I Implemented in R package mboost (Hothorn et al. 2010, 2011)
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Hothorn, T., P. Bühlmann, T. Kneib, M. Schmid and B. Hofner (2011): mboost: Model-Based Boosting. R
package version 2.1-0. https://r-forge.r-project.org/projects/mboost/

Schild, R. L., M. Maringa, J. Siemer, B. Meurer, N. Hart, T. W. Goecke, M. Schmid, T. Hothorn and M. E.
Hansmann (2008). Weight estimation by three-dimensional ultrasound imaging in the small fetus. Ultrasound in
Obstetrics and Gynecology 32, 168-175.

Tutz, G. and H. Binder (2006): Generalized additive modelling with implicit variable selection by likelihood based
boosting. Biometrics 62, 961-971.

van de Vijver, M. J., Y. D. He, L. J. van’t Veer, H. Dai, A. A. M. Hart, D. W. Voskuil et al. (2002). A
gene-expression signature as a predictor of survival in breast cancer. New England Journal of Medicine 347,
1999-2009.

35/35


	Aims and scope
	Why boosting?
	Definition and Properties of Gradient boosting
	References

