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LAims and scope

Aims and scope

> Consider a sample containing the values of a response variable Y’
and the values of some predictor variables X = (X7,..., Xp)T

> Aim: Find the “optimal” function f*(X) to predict Y’

> f*(X) should have a “nice” structure, for example,
f*(X) = ﬁo—‘r—ﬁle-i—"‘—‘rﬁpo (GLM) or
[F(X) = Bo+ filX)+ -+ fp(Xp) (GAM)

= f* should be interpretable
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LAims and scope

Example 1 - Birth weight data

> Prediction of birth weight by means of ultrasound measures
(Schild et al. 2008)

» Outcome: birth weight (BW) in g
» Predictor variables:

> abdominal volume (volABDO)

> biparietal diameter (BPD)

> head circumference (HC)

> other predictors (measured one week before delivery)
» Data from n = 150 children with birth weight < 1600g

= Find f* to predict BW
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LAims and scope

Birth weight data (2)

> Idea: Use 3D ultrasound measurements (left) in addition to
conventional 2D ultrasound measurements (right)

Sources: www.yourultrasound.com, www.fetalultrasoundutah.com

= Improve established formulas for weight prediction
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LAims and scope

Example 2 - Breast cancer data

» Data collected by the Netherlands Cancer Institute
(van de Vijver et al. 2002)
» 295 female patients younger than 53 years
» Outcome: time to death after surgery (in years)
» Predictor variables: microarray data (4919 genes) + 9 clinical
variables (age, tumor diameter, ...)

= Select a small set of marker genes (“sparse model")

= Use clinical variables and marker genes to predict survival
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LWhy boosting?

Classical modeling approaches

» Classical approach to obtain predictions from birth weight data and
breast cancer data: Fit additive regression models (Gaussian
regression, Cox regression) using maximum likelihood (ML)
estimation

> Example: Additive Gaussian model with smooth effects (represented
by P-splines) for birth weight data

= fH(X) =Bo+ fr(X1) + -+ fp(Xp)
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LWhy boosting?

Problems with ML estimation

» Predictor variables are highly correlated

= Variable selection is of interest because of multicollinearity
(“Do we really need 9 highly correlated predictor variables?")

> In case of the breast cancer data: Maximum (partial) likelihood
estimates for Cox regression do not exist (there are 4928 predictor
variables but only 295 observations, p > n)

=- Variable selection because of extreme multicollinearity

= We want to have a sparse (interpretable) model including the
relevant predictor variables only

> Conventional methods for variable selection (univariate, forward,
backward, etc.) are known to be instable and/or require the model
to be fitted multiple times.
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LWhy boosting?

Boosting - General properties

> Gradient boosting (boosting for short) is a fitting method to
minimize general types of risk functions w.r.t. a prediction
function f

» Examples of risk functions: Squared error loss in Gaussian
regression, negative log likelihood loss

» Boosting generally results in an additive prediction function, i.e.,
fH(X) =B+ fi(X1) + -+ fp(Xp)
= Prediction function is interpretable

= If run until convergence, boosting can be regarded as an alternative
to conventional fitting methods (Fisher scoring, backfitting) for
generalized additive models.
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Why boosting?

In contrast to conventional fitting methods, ...

. boosting is applicable to many different risk functions (absolute
loss, quantile regression)

. boosting can be used to carry out variable selection during the
fitting process
= No separation of model fitting and variable selection

. boosting is applicable even if p > n

. boosting addresses multicollinearity problems (by shrinking effect
estimates towards zero)

. boosting optimizes prediction accuracy (w.r.t. the risk function)
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LDefinition and Properties of Gradient boosting

Gradient boosting - estimation problem

» Consider a one-dimensional response variable Y and a
p-dimensional set of predictors X = (X,..., X,)"

» Aim: Estimation of

f* = argmin E[p(Y, f(X))] .
7C)
where p is a loss function that is assumed to be differentiable with
respect to a prediction function f(X)

» Examples of loss functions:
» p=(Y — f(X))? — squared error loss in Gaussian regression
> Negative log likelihood function of a statistical model
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L Definition and Properties of Gradient boosting

Gradient boosting - estimation problem (2)

> In practice, we usually have a set of realizations
X=(X1,...,X,),Y=(1,...,Y,) of X and Y, respectively

= Minimization of the empirical risk

n

1
R=— ;pm, F(X:))
with respect to f
BN > —
> Example: R = - Z(K — f(X;))? corresponds to minimizing the
i=1

expected squared error loss

12/35



Introduction to Gradient Boosting

L Definition and Properties of Gradient boosting

Naive functional gradient descent (FGD)

> ldea: use gradient descent methods to minimize

R =R(fa),---> fon)) wrt. foy = f(X1), ..., frn) = F(Xn)
> Start with offset values f (1) f([g])
> In iteration m:

2lm) Am—1] IR ( flm—1]
Ja) fa) ~3r0 (fu) )
= + 1% )
2lm] m—1] slm—1]
finy fin) ~ 7 (7 () )

where v is a step length factor

= Principle of steepest descent
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I—Definition and Properties of Gradient boosting

Naive functional gradient descent (2)
(Very) simple example: n =2, Y1 = Y5 =0, p = squared error loss
L/ 2
= R=3 () + /%)
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LDefinition and Properties of Gradient boosting

Naive functional gradient descent (3)

> Increase m until the algorithm converges to some values

A[mstOP] A[msmp]
f(l) oo f n)

> Problem with naive gradient descent:
» No predictor variables involved

» Structural relationship between f[m“"p ,...,f([n)“"" is ignored
(f(1) —=Y1,..., ([ZL)] —Y,)
» “Predictions” only for observed values Y7,...,Y,
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LDefinition and Properties of Gradient boosting

Gradient Boosting

> Solution: Estimate the negative gradient in each iteration

» Estimation is performed by some base-learning procedure regressing
the negative gradient on the predictor variables

= base-learning procedure ensures that f([g'smp], .. .,f([;rgs“’p] are

predictions from a statistical model depending on the predictor
variables

> To do this, we specify a set of regression models (“base-learners”)
with the negative gradient as the dependent variable

> In many applications, the set of base-learners will consist of p simple
regression models (= one base-learner for each of the p predictor
variables, “component-wise gradient boosting” )
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Gradient Boosting (2)

Functional gradient descent (FGD) boosting algorithm:

1. Initialize the n-dimensional vector f[o] with some offset values
(e.g., use a vector of zeroes). Set m = 0 and specify the set of
base-learners. Denote the number of base-learners by P.

0
2. Increase m by 1. Compute the negative gradient —ap(Y, f) and
evaluate at fl" 1 (X;), it =1,...,n. This yields the.negative
gradient vector
S
0
(577009

_2, )
of Y=m-,f=f[mll(Xi)>i_1,.,,,n
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L Definition and Properties of Gradient boosting

Gradient Boosting (3)

3. Estimate the negative gradient U™~ by using the base-learners
(i.e., the P regression estimators) specified in Step 1.

This yields P vectors, where each vector is an estimate of the

negative gradient vector U1,

Select the base-learner that fits U™~ best (— min. SSE). Set

glm=1l equal to the fitted values from the corresponding best
model.
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L Definition and Properties of Gradient boosting

Gradient Boosting (4)

4. Update fl" = flm=1 4, 7lm=1 \where 0 < v < 1 is a real-valued
step length factor.

5. lterate Steps 2 - 4 until m = Mmgop.

> The step length factor v could be chosen adaptively. Usually, an
adaptive strategy does not improve the estimates of f* but will only
lead to an increase in running time
= choose v small (v = 0.1) but fixed

19/35



Introduction to Gradient Boosting

I—Definition and Properties of Gradient boosting

Schematic overview of Step 3 in iteration m

» Component-wise gradient boosting with one base-learner for each
predictor variable:

U[m—l] ~ X,
U[m—l] ~ X5

gm=1 Xj (best—flttlng base—learner) {rm-1]

U[m—l] ~ Xp
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LDefinition and Properties of Gradient boosting

Simple example

> In case of Gaussian regression, gradient boosting is equivalent to

iteratively re-fitting the residuals of the model.

y=(05-0.9e°") x+0.02¢ Residuals
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Simple example

> In case of Gaussian regression, gradient boosting is equivalent to

iteratively re-fitting the residuals of the model.
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Simple example

> In case of Gaussian regression, gradient boosting is equivalent to

iteratively re-fitting the residuals of the model.
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Simple example

> In case of Gaussian regression, gradient boosting is equivalent to
iteratively re-fitting the residuals of the model.
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Simple example

> In case of Gaussian regression, gradient boosting is equivalent to

iteratively re-fitting the residuals of the model.

y=(05-0.9e°") x+0.02¢ Residuals
0.10 - 0.10 -
m=10
0.05 - 0.05
kS
kL
> 0.00 2 0.00
3
&
-0.05 - -0.05 o
-0.10 o © -0.10 +
T T T T T

-0.2

-01 0.0 0.1

-0.2 -01 0.0 0.1 0.2

25/35



Introduction to Gradient Boosting

LDefinition and Properties of Gradient boosting

Simple example

> In case of Gaussian regression, gradient boosting is equivalent to

iteratively re-fitting the residuals of the model.
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LDefinition and Properties of Gradient boosting

Simple example

> In case of Gaussian regression, gradient boosting is equivalent to

iteratively re-fitting the residuals of the model.
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LDefinition and Properties of Gradient boosting

Simple example

> In case of Gaussian regression, gradient boosting is equivalent to

iteratively re-fitting the residuals of the model.
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LDefinition and Properties of Gradient boosting

Properties of gradient boosting

> It is clear from Step 4 that the predictions of Y7,...,Y,, in
iteration mgop take the form of an additive function:

f[mstop] — f[o] + v U[O] + -4+ v U[mstopfl]

> The structure of the prediction function depends on the choice of
the base-learners
» For example, linear base-learners result in linear prediction
functions

» Smooth base-learners result in additive prediction functions
with smooth components

= f[m“@] has a meaningful interpretation
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LDefinition and Properties of Gradient boosting

Gradient boosting with early stopping

» Gradient boosting has a , built-in" mechanism for base-learner
selection in each iteration.

= This mechanism will carry out variable selection.
> Gradient boosting is applicable even if p > n.

> In case p > n, it is usually desirable to select a small number of
informative predictor variables (“sparse solution™).

> If m — oo, the algorithm will select non-informative predictor
variables.

= Overfitting can be avoided if the algorithm is stopped early, i.e.,
if Mstop is considered as a tuning parameter of the algorithm
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L Definition and Properties of Gradient boosting

lllustration of variable selection and early stopping

> Very simple example: 3 predictor variables X7, X5, X3,

3 linear base-learners with coefficient estimates Bj[-m], i=1,2,3

> Assume that mgop =5

» Assume that X; was selected in the first, second and fifth iteration

» Assume that X3 was selected in the third and forth iteration

f‘[mstc)p] =

FOl gl 4y ol 4, 2 4 OBl 4y O]
B 4 VBEO] X1+ VBP] X1 + 1/35] X3+ 1/5’;[3] X3+ 1/:354] X1
B+ v (BEO] + f;’El] + »“f;’r]) X1 +v (352] + Q.[?]) X3

B 4 B Xy + 55 X3

= Linear prediction function

= Xj is not included in the model (variable selection)
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I—Definition and Properties of Gradient boosting

How should the stopping iteration be chosen?

> Use cross-validation techniques to determine mgop

= The stopping iteration is chosen such that it maximizes prediction

accuracy.

predictive risk

cross-validated mstop

Number of boosting iterations
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LDefinition and Properties of Gradient boosting

Shrinkage

» Early stopping will not only result in sparse solutions but will also
lead to shrunken effect estimates (— only a small fraction of U is
added to the estimates in each iteration).

> Shrinkage leads to a downward bias (in absolute value) but to a
smaller variance of the effect estimates (similar to Lasso or Ridge
regression).

= Multicollinearity problems are addressed.
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LDefinition and Properties of Gradient boosting

Further aspects

» There are many types of boosting methods, e.g.,
> tree-based boosting (AdaBoost, Freund & Schapire 1997)
> likelihood-based boosting (Tutz & Binder 2006)

» Here we consider gradient boosting

> Flexible method to fit many types of statistical models in high-
and low-dimensional settings

> Regularization of estimates via variable selection and shrinkage

> Implemented in R package mboost (Hothorn et al. 2010, 2011)
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