Model-based boosting in R

Introduction to Gradient Boosting

Matthias Schmid

Institut für Medizininformatik, Biometrie und Epidemiologie (IMBE)

Friedrich-Alexander-Universität Erlangen-Nürnberg

Statistical Computing 2011

Aims and scope

Why boosting?

Definition and Properties of Gradient boosting

References

Aims and scope

- ▶ Consider a sample containing the values of a response variable Y and the values of some predictor variables $X = (X_1, \dots, X_p)^\top$
- lacktriangle Aim: Find the "optimal" function $f^*(X)$ to predict Y
- $f^*(X)$ should have a "nice" structure, for example,

$$f^*(\mathbf{X}) = \beta_0 + \beta_1 \mathbf{X}_1 + \dots + \beta_p \mathbf{X}_p \quad (GLM) \quad \text{or}$$

$$f^*(\mathbf{X}) = \beta_0 + f_1(\mathbf{X}_1) + \dots + f_p(\mathbf{X}_p) \quad (GAM)$$

 $\Rightarrow f^*$ should be interpretable

Example 1 - Birth weight data

- Prediction of birth weight by means of ultrasound measures (Schild et al. 2008)
 - Outcome: birth weight (BW) in g
 - Predictor variables:
 - abdominal volume (volABDO)
 - biparietal diameter (BPD)
 - head circumference (HC)
 - other predictors (measured one week before delivery)
 - ▶ Data from n = 150 children with birth weight $\leq 1600g$
- \Rightarrow Find f^* to predict BW

-Aims and scope

Birth weight data (2)

▶ Idea: Use 3D ultrasound measurements (left) in addition to conventional 2D ultrasound measurements (right)

Sources: www.yourultrasound.com, www.fetalultrasoundutah.com

⇒ Improve established formulas for weight prediction

Example 2 - Breast cancer data

- ▶ Data collected by the Netherlands Cancer Institute (van de Vijver et al. 2002)
 - ▶ 295 female patients younger than 53 years
 - Outcome: time to death after surgery (in years)
 - ► Predictor variables: microarray data (4919 genes) + 9 clinical variables (age, tumor diameter, ...)
- ⇒ Select a small set of marker genes ("sparse model")
- ⇒ Use clinical variables and marker genes to predict survival

Classical modeling approaches

- Classical approach to obtain predictions from birth weight data and breast cancer data: Fit additive regression models (Gaussian regression, Cox regression) using maximum likelihood (ML) estimation
- ► Example: Additive Gaussian model with smooth effects (represented by P-splines) for birth weight data

$$\Rightarrow f^*(\mathbf{X}) = \beta_0 + f_1(\mathbf{X}_1) + \dots + f_p(\mathbf{X}_p)$$

Problems with ML estimation

- Predictor variables are highly correlated
- ⇒ Variable selection is of interest because of multicollinearity ("Do we really need 9 highly correlated predictor variables?")
 - In case of the breast cancer data: Maximum (partial) likelihood estimates for Cox regression do not exist (there are 4928 predictor variables but only 295 observations, $p \gg n$)
- ⇒ Variable selection because of extreme multicollinearity
- ⇒ We want to have a sparse (interpretable) model including the relevant predictor variables only
 - Conventional methods for variable selection (univariate, forward, backward, etc.) are known to be instable and/or require the model to be fitted multiple times.

Boosting - General properties

- Gradient boosting (boosting for short) is a fitting method to minimize general types of risk functions w.r.t. a prediction function f
- Examples of risk functions: Squared error loss in Gaussian regression, negative log likelihood loss
- ▶ Boosting generally results in an *additive* prediction function, i.e., $f^*(X) = \beta_0 + f_1(X_1) + \cdots + f_n(X_n)$
- ⇒ Prediction function is interpretable
- ⇒ If run until convergence, boosting can be regarded as an alternative to conventional fitting methods (Fisher scoring, backfitting) for generalized additive models.

Why boosting?

In contrast to conventional fitting methods, ...

- ... boosting is applicable to many different risk functions (absolute loss, quantile regression)
- ... boosting can be used to carry out variable selection *during the fitting process*
 - ⇒ No separation of model fitting and variable selection
- ... boosting is applicable even if $p \gg n$
- ... boosting addresses multicollinearity problems (by shrinking effect estimates towards zero)
- ... boosting optimizes prediction accuracy (w.r.t. the risk function)

Gradient boosting - estimation problem

- ▶ Consider a one-dimensional response variable \boldsymbol{Y} and a p-dimensional set of predictors $\boldsymbol{X} = (\boldsymbol{X}_1, \dots, \boldsymbol{X}_p)^\top$
- Aim: Estimation of

$$f^* := \underset{f(\cdot)}{\operatorname{argmin}} \mathsf{E}[\rho(\boldsymbol{Y}, f(\boldsymbol{X}))] ,$$

where ρ is a loss function that is assumed to be differentiable with respect to a prediction function $f(\boldsymbol{X})$

- Examples of loss functions:
 - $ho = (\boldsymbol{Y} f(\boldsymbol{X}))^2 o$ squared error loss in Gaussian regression
 - Negative log likelihood function of a statistical model

Gradient boosting - estimation problem (2)

- In practice, we usually have a set of realizations $X=(X_1,\ldots,X_n)$, $Y=(Y_1,\ldots,Y_n)$ of ${\pmb X}$ and ${\pmb Y}$, respectively
- ⇒ Minimization of the empirical risk

$$\mathcal{R} = \frac{1}{n} \sum_{i=1}^{n} \rho(Y_i, f(X_i))$$

with respect to f

Example: $\mathcal{R}=\frac{1}{n}\sum_{i=1}^n(Y_i-f(X_i))^2$ corresponds to minimizing the expected squared error loss

Naive functional gradient descent (FGD)

- Idea: use gradient descent methods to minimize $\mathcal{R} = \mathcal{R}(f_{(1)}, \dots, f_{(n)})$ w.r.t. $f_{(1)} = f(X_1), \dots, f_{(n)} = f(X_n)$
- lacksquare Start with offset values $\hat{f}_{(1)}^{[0]},\ldots,\hat{f}_{(n)}^{[0]}$
- ▶ In iteration *m*:

$$\begin{pmatrix} \hat{f}_{(1)}^{[m]} \\ \vdots \\ \hat{f}_{(n)}^{[m]} \end{pmatrix} = \begin{pmatrix} \hat{f}_{(1)}^{[m-1]} \\ \vdots \\ \hat{f}_{(n)}^{[m-1]} \end{pmatrix} + \nu \cdot \begin{pmatrix} -\frac{\partial \mathcal{R}}{\partial f_{(1)}} (\hat{f}_{(1)}^{[m-1]}) \\ \vdots \\ -\frac{\partial \mathcal{R}}{\partial f_{(n)}} (\hat{f}_{(n)}^{[m-1]}) \end{pmatrix} ,$$

where ν is a step length factor

⇒ Principle of *steepest descent*

Definition and Properties of Gradient boosting

Naive functional gradient descent (2)

(Very) simple example:
$$n=2$$
, $Y_1=Y_2=0$, $\rho=$ squared error loss $\Rightarrow \mathcal{R}=rac{1}{2}\left(f_{(1)}^2+f_{(2)}^2
ight)$

Naive functional gradient descent (3)

- ▶ Increase m until the algorithm converges to some values $\hat{f}_{(1)}^{[m_{\text{stop}}]}, \dots, \hat{f}_{(n)}^{[m_{\text{stop}}]}$
- ▶ Problem with **naive** gradient descent:
 - No predictor variables involved
 - ▶ Structural relationship between $\hat{f}_{(1)}^{[m_{\text{stop}}]}, \dots, \hat{f}_{(n)}^{[m_{\text{stop}}]}$ is ignored $(\hat{f}_{(1)}^{[m]} \to Y_1, \dots, \hat{f}_{(n)}^{[m]} \to Y_n)$
 - "Predictions" only for observed values Y_1, \ldots, Y_n

Gradient Boosting

- ► Solution: Estimate the negative gradient in each iteration
- ► Estimation is performed by some base-learning procedure regressing the negative gradient on the predictor variables
 - \Rightarrow base-learning procedure ensures that $\hat{f}_{(1)}^{[m_{\text{stop}}]}, \dots, \hat{f}_{(n)}^{[m_{\text{stop}}]}$ are predictions from a statistical model depending on the predictor variables
- ► To do this, we specify a set of regression models ("base-learners") with the negative gradient as the dependent variable
- In many applications, the set of base-learners will consist of p simple regression models (⇒ one base-learner for each of the p predictor variables, "component-wise gradient boosting")

Gradient Boosting (2)

Functional gradient descent (FGD) boosting algorithm:

- 1. Initialize the n-dimensional vector $\hat{f}^{[0]}$ with some offset values (e.g., use a vector of zeroes). Set m=0 and specify the set of base-learners. Denote the number of base-learners by P.
- 2. Increase m by 1. Compute the negative gradient $-\frac{\partial}{\partial f}\rho(Y,f)$ and evaluate at $\hat{f}^{[m-1]}(X_i)$, $i=1,\ldots,n$. This yields the negative gradient vector $U^{[m-1]}=(U_i^{[m-1]})_{i=1,\ldots,n}:=\left.\begin{pmatrix}-\frac{\partial}{\partial f}\rho(Y,f)\Big|_{Y=Y_i,f=\hat{f}^{[m-1]}(X_i)}\end{pmatrix}\right)_{i=1,\ldots,n}$

:

Gradient Boosting (3)

:

3. Estimate the negative gradient $U^{[m-1]}$ by using the base-learners (i.e., the P regression estimators) specified in Step 1.

This yields P vectors, where each vector is an estimate of the negative gradient vector $U^{[m-1]}$.

Select the base-learner that fits $U^{[m-1]}$ best (\rightarrow min. SSE). Set $\hat{U}^{[m-1]}$ equal to the fitted values from the corresponding best model.

:

Gradient Boosting (4)

- 4. Update $\hat{f}^{[m]}=\hat{f}^{[m-1]}+\nu\,\hat{U}^{[m-1]}$, where $0<\nu\leq 1$ is a real-valued step length factor.
- 5. Iterate Steps 2 4 until $m = m_{\text{stop}}$.
- ▶ The step length factor ν could be chosen adaptively. Usually, an adaptive strategy does not improve the estimates of f^* but will only lead to an increase in running time
 - \Rightarrow choose ν small ($\nu = 0.1$) but fixed

Definition and Properties of Gradient boosting

Schematic overview of Step 3 in iteration m

Component-wise gradient boosting with one base-learner for each predictor variable:

$$\begin{array}{c} U^{[m-1]} \sim \textbf{\textit{X}}_1 \\ U^{[m-1]} \sim \textbf{\textit{X}}_2 \\ & \vdots \\ \hline U^{[m-1]} \sim \textbf{\textit{X}}_j \end{array} \overset{\text{best-fitting base-learner}}{\longleftrightarrow} \hat{U}^{[m-1]} \\ \vdots \\ U^{[m-1]} \sim \textbf{\textit{X}}_p \end{array}$$

Definition and Properties of Gradient boosting

Simple example

Properties of gradient boosting

It is clear from Step 4 that the predictions of Y_1, \ldots, Y_n in iteration m_{stop} take the form of an additive function:

$$\hat{f}^{[m_{\text{stop}}]} = \hat{f}^{[0]} + \nu \, \hat{U}^{[0]} + \dots + \nu \, \hat{U}^{[m_{\text{stop}}-1]}$$

- The structure of the prediction function depends on the choice of the base-learners
 - ► For example, linear base-learners result in linear prediction functions
 - ► Smooth base-learners result in additive prediction functions with smooth components
- $\Rightarrow \hat{f}^{[m_{ ext{stop}}]}$ has a meaningful interpretation

Gradient boosting with early stopping

- Gradient boosting has a "built-in" mechanism for base-learner selection in each iteration.
- ⇒ This mechanism will carry out variable selection.
 - Gradient boosting is applicable even if p > n.
 - ▶ In case p > n, it is usually desirable to select a small number of informative predictor variables ("sparse solution").
 - If $m \to \infty$, the algorithm will select non-informative predictor variables.
 - \Rightarrow Overfitting can be avoided if the algorithm is *stopped early*, i.e., if $m_{\rm stop}$ is considered as a tuning parameter of the algorithm

Illustration of variable selection and early stopping

- ▶ Very simple example: 3 predictor variables X_1 , X_2 , X_3 , 3 linear base-learners with coefficient estimates $\hat{\beta}_j^{[m]}$, j=1,2,3
- Assume that $m_{\rm stop} = 5$
- lacktriangle Assume that $oldsymbol{X}_1$ was selected in the first, second and fifth iteration
- ightharpoonup Assume that X_3 was selected in the third and forth iteration

$$\begin{split} \hat{f}^{[m_{\text{stop}}]} &= \hat{f}^{[0]} + \nu \, \hat{U}^{[0]} + \nu \, \hat{U}^{[1]} + \nu \, \hat{U}^{[2]} + \nu \, \hat{U}^{[3]} + \nu \, \hat{U}^{[4]} \\ &= \hat{\beta}^{[0]} + \nu \, \hat{\beta}_{1}^{[0]} \, \boldsymbol{X}_{1} + \nu \, \hat{\beta}_{1}^{[1]} \, \boldsymbol{X}_{1} + \nu \, \hat{\beta}_{3}^{[2]} \, \boldsymbol{X}_{3} + \nu \, \hat{\beta}_{3}^{[3]} \, \boldsymbol{X}_{3} + \nu \, \hat{\beta}_{1}^{[4]} \, \boldsymbol{X}_{1} \\ &= \hat{\beta}^{[0]} + \nu \left(\hat{\beta}_{1}^{[0]} + \hat{\beta}_{1}^{[1]} + \hat{\beta}_{1}^{[4]} \right) \boldsymbol{X}_{1} + \nu \left(\hat{\beta}_{3}^{[2]} + \hat{\beta}_{3}^{[3]} \right) \boldsymbol{X}_{3} \\ &= \hat{\beta}^{[0]} + \hat{\beta}_{1}^{*} \boldsymbol{X}_{1} + \hat{\beta}_{3}^{*} \boldsymbol{X}_{3} \end{split}$$

- ⇒ Linear prediction function
- \Rightarrow X_2 is not included in the model (variable selection)

Definition and Properties of Gradient boosting

How should the stopping iteration be chosen?

lacktriangle Use cross-validation techniques to determine $m_{
m stop}$

⇒ The stopping iteration is chosen such that it *maximizes prediction* accuracy.

Definition and Properties of Gradient boosting

Shrinkage

- ▶ Early stopping will not only result in sparse solutions but will also lead to shrunken effect estimates (\rightarrow only a small fraction of \hat{U} is added to the estimates in each iteration).
- Shrinkage leads to a downward bias (in absolute value) but to a smaller variance of the effect estimates (similar to Lasso or Ridge regression).
- ⇒ Multicollinearity problems are addressed.

Further aspects

- ▶ There are many types of boosting methods, e.g.,
 - tree-based boosting (AdaBoost, Freund & Schapire 1997)
 - ▶ likelihood-based boosting (Tutz & Binder 2006)
- ▶ Here we consider gradient boosting
 - Flexible method to fit many types of statistical models in highand low-dimensional settings
 - Regularization of estimates via variable selection and shrinkage
- ▶ Implemented in R package **mboost** (Hothorn et al. 2010, 2011)

References

Freund, Y. and R. Schapire (1997): A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences 55, 119-139.

Hothorn, T., P. Bühlmann, T. Kneib, M. Schmid and B. Hofner (2010): Model-based boosting 2.0. Journal of Machine Learning Research 11, 2109-2113.

Hothorn, T., P. Bühlmann, T. Kneib, M. Schmid and B. Hofner (2011): mboost: Model-Based Boosting. R package version 2.1-0. https://r-forge.r-project.org/projects/mboost/

Schild, R. L., M. Maringa, J. Siemer, B. Meurer, N. Hart, T. W. Goecke, M. Schmid, T. Hothorn and M. E. Hansmann (2008). Weight estimation by three-dimensional ultrasound imaging in the small fetus. Ultrasound in Obstetrics and Gonecology 32, 168-175.

Tutz, G. and H. Binder (2006): Generalized additive modelling with implicit variable selection by likelihood based boosting. Biometrics 62, 961-971.

van de Vijver, M. J., Y. D. He, L. J. van't Veer, H. Dai, A. A. M. Hart, D. W. Voskuil et al. (2002). A gene-expression signature as a predictor of survival in breast cancer. New England Journal of Medicine 347, 1999-2009.