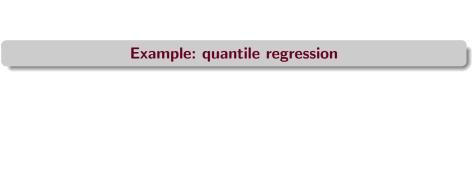
Model-based boosting in R Build your own family

Andreas Mayr


andreas.mayr@imbe.med.uni-erlangen.de
Institut für Medizininformatik, Biometrie und Epidemiologie (IMBE)
Friedrich-Alexander-Universität Erlangen-Nürnberg

Statistical Computing 2011

Build your own family

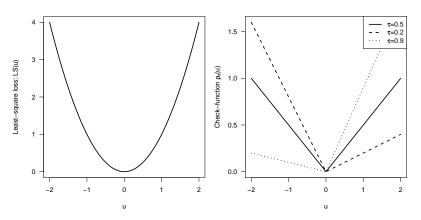
```
Family(ngradient, loss = NULL, risk = NULL,
    offset = function(y, w)
        optimize(risk, interval = range(y), y=y, w=w)$minimum, ...)
```

- Family(): can be used to create a new family
- ngradient: a function with arguments y, f and w (weights)
 implementing the negative gradient of the loss function
- loss: function to be minimized with arguments y and f
- risk: By default, the (weighted) sum of the loss function
- ullet offset: starting value for the algorithm: $\hat{f}^{[0]}$

Quantile regression

What's our loss?

 Quantile regression, in comparison to standard regression, fits quantiles rather than the expected mean of the conditional distribution function


$$y_i = \hat{f}_{\tau i} + \varepsilon_{\tau i}$$

• The appropriate loss function for the τ -quantile is the *check-function* $\rho_{\tau}(\cdot)$:

$$\rho_{\tau}(y_i - \hat{f}_{\tau i}) = \begin{cases} (y_i - \hat{f}_{\tau i}) \cdot \tau & (y_i - \hat{f}_{\tau i}) \ge 0\\ (y_i - \hat{f}_{\tau i}) \cdot (\tau - 1) & (y_i - \hat{f}_{\tau i}) < 0. \end{cases}$$

Quantile regression

What's our loss?

Loss function for standard regression (left) and the check function for quantile regression (right) for different values of τ .

Quantile regression

What's the gradient?

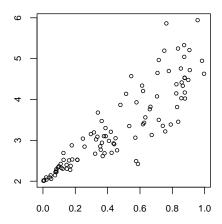
• The check-function is not differentiable at the point 0. But in practice, as the response is continuous, we can ignore this by defining:

$$-\frac{\partial \rho_{\tau}(y_i, f_{\tau i})}{\partial f} = \begin{cases} \tau & (y_i - \hat{f}_{\tau i}) \ge 0\\ \tau - 1 & (y_i - \hat{f}_{\tau i}) < 0. \end{cases}$$

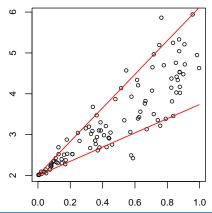
ngradient = function(y, f, w = 1)

$$tau * ((y - f) >= 0) + (tau - 1) * ((y - f) < 0)$$

Construct our own family


```
OurQuantReg <- function(tau = 0.5){</pre>
    Family(
     ngradient = function(v, f, w = 1)
                    tau * ((y - f) >= 0) + (tau - 1) * ((y - f) < 0),
+
    loss = function(y, f) tau *(y - f) * ((y - f) >= 0) +
+
               (tau - 1) * (v - f) * ((v - f) < 0).
+
   offset = function(y, w = 1) median(y),
     name = "Our new family for quantile regression"
     )}
   OurQuantReg()
         Our new family for quantile regression
Loss function: tau * (y - f) * ((y - f) >= 0) + (tau - 1) * (y - f)
```

*((y - f) < 0)

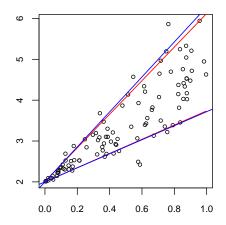

Let's try how it works

```
R> set.seed(0804)
R> x <- runif(100)
R> y <- 2 + 3*x + x*rnorm(100)
R> plot(x,y)
```


Let's try how it works

```
R> ctrl <- boost_control(mstop=500)
R> gb1 <- glmboost(y~x, family=OurQuantReg(tau=0.1), control=ctrl)
R> gb2 <- glmboost(y~x, family=OurQuantReg(tau=0.9), control=ctrl)
R> lines(x, fitted(gb1), col=2)
R> lines(x, fitted(gb2), col=2)
```


Let's try how it works


Compare to rq() of Koenker's quantreg package, which can be seen as the gold standard for low-dimensional quantile regression, based on linear programming:

```
R> library(quantreg)
R > rq1 < - rq(y^x, tau=0.1)
R > rq2 < - rq(y^x, tau=0.9)
R> rbind(coef(rq1), coef(rq2))
    (Intercept) x
[1.] 1.998975 1.740673
[2.] 2.009817 4.111221
R> rbind(coef(gb1, off2int=TRUE), coef(gb2, off2int=TRUE))
    (Intercept)
[1,] 1.998600 1.740263
[2,] 2.010295 4.111727
```

Let's try how it works

Compare to the true coefficients:

```
R> abline(a=2, b= 3 + qnorm(0.1), col=4)
R> abline(a=2, b= 3 + qnorm(0.9), col=4)
```


For more on quantile regression

Family QuantReg() is implemented in mboost (Fenske et al., 2011).

- Koenker, R. (2005). Quantile Regression. New York: Cambridge University Press.
- Fenske, N., Kneib, T. and Hothorn, T. (2011). Identifying risk factors for severe childhood malnutrition by boosting additive quantile regression. *Journal of the American Statistical Association*, to appear.