

Social contact data in endemic-epidemic models and probabilistic forecasting with surveillance

Sebastian Meyer Institute of Medical Informatics, Biometry, and Epidemiology Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany 24 July 2017

Joint work with Johannes Bracher and Leonhard Held (University of Zurich)

World Health Organization 2014

Forecasting disease outbreaks is still in its infancy, however, unlike weather forecasting, where substantial progress has been made in recent years.

World Health Organization 2014

Forecasting disease outbreaks is still in its infancy, however, unlike weather forecasting, where substantial progress has been made in recent years.

Key requirements to forecast infectious disease incidence

- Multivariate view to predict incidence in different regions and subgroups
- Stratified count time series from routine public health surveillance
- Useful statistical models to reflect forecast uncertainty
- Predictive model assessment

Infectious disease spread ~ social contacts

EU-funded POLYMOD study [Mossong et al. 2008]:

- 7 290 participants from eight European countries recorded contacts during one day
- Contact characteristics were similar across countries
- Remarkable mixing patterns with respect to age

Infectious disease spread ~ location and distance

Tobler's First Law of Geography:

Everything is related to everything else, but near things are more related than distant things.

Specifically [e.g., Meyer and Held 2017]:

Spatial interaction decays as a power law.

Regional characteristics may also affect disease spread, e.g., rural vs. urban municipalities

Infectious disease spread ~ time

- Occasional outbreaks
- Limited infectious period

• Seasonality (influenza, measles, norovirus gastroenteritis, ...)

Case study: norovirus gastroenteritis in Berlin, 2011–2016

Lab-confirmed counts from survstat.rki.de, stratified by 12 city districts and 6 age groups

Negative binomial likelihood for infectious disease counts Y_{grt} with endemic-epidemic mean decomposition:

$$\mu_{grt} = v_{grt} + \phi_{grt} \sum_{g',r'} c_{g'g} w_{r'r} Y_{g',r',t-1}$$

Negative binomial likelihood for infectious disease counts Y_{grt} with endemic-epidemic mean decomposition:

$$\mu_{grt} = v_{grt} + \phi_{grt} \sum_{g',r'} c_{g'g} w_{r'r} Y_{g',r',t-1}$$

Negative binomial likelihood for infectious disease counts Y_{grt} with endemic-epidemic mean decomposition:

$$\mu_{grt} = v_{grt} + \phi_{grt} \sum_{g',r'} c_{g'g} w_{r'r} Y_{g',r',t-1}$$

Spatial weights, e.g., power-law decay $w_{r'r} = (o_{r'r} + 1)^{-\rho}$

Negative binomial likelihood for infectious disease counts Y_{grt} with endemic-epidemic mean decomposition:

$$\mu_{grt} = \underbrace{v_{grt}}_{drt} + \underbrace{\phi_{grt}}_{g',r'} \underbrace{\sum_{g',r'} c_{g'g} w_{r'r} Y_{g',r',t-1}}_{g',r'}$$

Spatial weights, e.g., power-law decay $w_{r'r} = (o_{r'r} + 1)^{-\rho}$

Log-linear predictors v_{grt} and ϕ_{grt}

- Population offsets
- Seasonality
- Group-specific susceptibility
- Covariates

Power-adjustment of the contact matrix: $C^{\kappa} := E \Lambda^{\kappa} E^{-1}$

Model estimation

Likelihood inference using surveillance::hhh4() [Meyer, Held, and Höhle 2017]

A "simple", age-stratified, spatio-temporal model¹:

¹Full models in demo("hhh4contacts", package = "hhh4contacts")

Fitted mean by age group aggregated over districts

05 - 14

15-24 40 30 20 0 0 2011 2012 2013 2014 2015 2016

25-44

65+

Prediction and validation

- AIC-based model comparison selects most complex model
- Is this choice also supported by predictive model assessment based on the last season?
- We quantify sharpness and calibration of probabilistic forecasts
 - · one-week-ahead: predictive distributions are negative binomial
 - long-term: via Monte Carlo simulation
- Proper scoring rules serve as overall performance measures [Gneiting and Katzfuss 2014]
 - Assign penalty score based on the predictive distribution *F* and the actual observation *y_{obs}*
 - Example: Dawid-Sebastiani score

$$\mathsf{DSS}(F, \mathbf{y}_{obs}) = \mathsf{log}|\boldsymbol{\Sigma}| + (\mathbf{y}_{obs} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\mathbf{y}_{obs} - \boldsymbol{\mu})$$

Target quantity: overall epidemic curve

Target quantity: final size by age group

full model

Summary and outlook

- Models do not perfectly represent individual-level disease transmission, but are still useful for prediction of aggregate-level surveillance counts
- Spatial weights and social contact data improve model fit *and* predictions [Held, Meyer, and Bracher 2017]
- If the modelling goal is forecasting, use proper scoring rules to assess the quality of probabilistic forecasts
 - For Poisson and NegBin predictions: rps, dss, logs (in surveillance)
 - For continuous distributions: crps, logs (in scoringRules)

Summary and outlook

- Models do not perfectly represent individual-level disease transmission, but are still useful for prediction of aggregate-level surveillance counts
- Spatial weights and social contact data improve model fit *and* predictions [Held, Meyer, and Bracher 2017]
- If the modelling goal is forecasting, use proper scoring rules to assess the quality of probabilistic forecasts
 - For Poisson and NegBin predictions: rps, dss, logs (in surveillance)
 - For continuous distributions: crps, logs (in scoringRules)
- Binomial hhh4 models (Regina Köhler)
- Another hhh4 add-on package (Johannes Bracher):
 - Analytical DSS of multivariate path forecasts
 - Distributed higher-order time lags

References

Gneiting, Tilmann and Katzfuss, Matthias (2014). "Probabilistic forecasting". In: Annual Review of Statistics and Its Application 1.1, pp. 125–151. DOI: 10.1146/annurev-statistics-062713-085831. Held, Leonhard, Meyer, Sebastian, and Bracher, Johannes (2017). "Probabilistic forecasting in infectious disease epidemiology: The 13th Armitage lecture". In: Statistics in Medicine (in press). DOI: 10.1002/sim.7363. Meyer, Sebastian and Held, Leonhard (2017). "Incorporating social contact data in spatio-temporal models for infectious disease spread". In: Biostatistics 18.2, pp. 338-351. DOI: 10.1093/biostatistics/kxw051. Meyer, Sebastian, Held, Leonhard, and Höhle, Michael (2017). "Spatio-temporal analysis of epidemic phenomena using the R package surveillance". In: Journal of Statistical Software 77.11, pp. 1-55. DOI: 10.18637/jss.v077.i11. Mossong, Joël et al. (2008). "Social contacts and mixing patterns relevant to the spread of infectious diseases". In: PLoS Medicine 5.3, e74, DOI: 10.1371/journal.pmed.0050074. World Health Organization (2014). "Anticipating epidemics". In: Weekly Epidemiological Record 89.22, p. 244. URL: http://www.who.int/wer.

Questions? Comments? 📭 seb.meyer@fau.de

Appendix

Disease incidence map

```
noroBEr <- noroBE(by = "districts",
    timeRange=c("2011-w27","2016-w26"))
scalebar <- layout.scalebar(noroBEr@map,
    corner = c(0.7, 0.9), scale = 10,
    labels = c(0, "10 km"), cex = 0.6,
    height = 0.02)
plot(noroBEr, type = observed ~ unit,
    sub = "Mean yearly incidence",
    population = 100000 / (
        sum(pop2011)*(nrow(noroBEr)/52)
    ), labels = list(cex = 0.8),
    sp.layout = scalebar)
```

2011/27 - 2016/26

noroBErbyg <- noroBE(by = "all", timeRange = c("2011-w27", "2016-w26"))</pre>

05-14

15-24

0.81 1.21 1.69 2.25 2.56 2.89 3.24 1.96 2.56 3.24 4.004.41 4.84 5.29

25-44

45-64

65+

animation::saveHTML(animate(noroBErbyg[["00-04"]], tps = 1:52, timeplot = list(as.Date = TRUE)))

Model formulation for the norovirus data

$$\mu_{grt} = e_{gr} \exp\left\{\alpha_g^{(\nu)} + \alpha_r^{(\nu)} + \beta x_t + \gamma_g^{(\nu)} \sin(\omega t) + \delta_g^{(\nu)} \cos(\omega t)\right\}$$
$$+ \exp\left\{\alpha_g^{(\phi)} + \alpha_r^{(\phi)} + \tau \log(e_{gr}) + \gamma^{(\phi)} \sin(\omega t) + \delta^{(\phi)} \cos(\omega t)\right\}$$
$$\sum_{g',r'} \lfloor (\boldsymbol{C}^{\kappa})_{g'g} (o_{r'r} + 1)^{-\rho} \rfloor Y_{g',r',t-1}$$

- Group- and district-specific effects $lpha_g^{(\cdot)}$ and $lpha_r^{(\cdot)}$
- Christmas break indicator $x_t \rightarrow$ reduced reporting
- Group-specific endemic seasonality (sinusoidal log-rates, $\omega=2\pi/52$)
- "Gravity model" $e_{ar}^{ au}
 ightarrow$ force of infection scales with population size
- *C^κ*: power-adjusted contact matrix
- Power-law weights $w_{r'r} = (o_{r'r} + 1)^{-\rho}$
- + group-specific overdispersion parameters

Estimated seasonality

Estimated power-law weights

